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Evaluation of Stress Intensity Factor for A Partially Patched Crack 
Using an Approximate Weight Function 
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A cracked plate with a patch bonded on one side was treated with a crack-bridging model 

using weight function : assuming continuous distribution of springs acting between th crack 

surfaces, the stress intensity factor of the patched crack was numerically obtained. Especially in 

the case of a patched crack subjected to residual non-uniform stress, the stress intensity factor 

was easily with the corresponding approximate weight function. This paper presented the stress 

intensity factors for a crack partially patched within a finite plate or a patched crack initiated 

from a notch. 
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Nomenclature  
a : Crack length 

g(xi,  xd): Influence function 

k : Constraint factor 

K : Stress intensity factor 

m(x ,  a) : Weight function 

S : Stiffness ratio between plate and rein- 

forcment 

u (x) ; Crack surface displacement 

a(x)  : Applied stress distribution 

1. Introduction 

The repair process, using adhesively bonded 

composite materials of high stiffness, provides effi- 

cient and cost-effective repairs for cracked air- 

craft components. Compared to mechanical me- 
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thods such as riveting or bolting, adhesive bon- 

ding provides more uniform and efficient load 

transfer into the patch from the cracked compo- 

nent to introduce much lower stress concentra- 

tions. Especially, the recent advances in adhesive 

bonding techniques and composite materials have 

sparked new interest in repairing cracked aircraft 

components with bonded composite patches. 

On the other hand, the crack-bridging model, 

assuming a continuous distribution of springs bet- 

ween the crack faces, has been successfully used to 

calculate the stress intensity factor for a patched 

crack within an infinite plate (Rose, 1988, 1987). 

Additionally, the stress intensity factor for a cen- 

ter crack subjected to mixed mode loading within 

an infinite plate was also obtained from the 

crack-bridging model (Wang and Rose, 1998, 

1999; Kim and Lee, 2000). To obtain the stress 

intensity factor, the weight function method has 

been a very useful and versatile method of cal- 

culating stress intensity factors for cracks sub- 

jected to non-uniform stress fields such as resi- 

dual stress or thermal loading (Bueckner, 1970; 

Rice, 1972). Recently, the stress intensity factor 
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for a center crack with a patch bonded on one 

side within an infinite plate was obtained by 

using crack-bridging model and weight function 

(Kim et al., 2000; Kim and Lee, 2000). 

This paper described the calculation of the 

stress intensity factor for a partially patched cen- 

ter crack within a finite plate using its approxi- 

mate weight function. Additionally, the stress in- 

tensity factors for a single or double cracks in- 

itiated from notch, as often shown in the failure of 

aircraft components, were also obtained using its 

approximate weight function. 

2. Definit ion of  Problem : 

A Partially Patched Crack 

The problem considered here is a finite center- 

cracked plate, with a crack of length 2a and un- 

der a remote uniform tensile traction o'oo as shown 

in Fig. 1. The crack is partially patched on one 

side with a composite material. Subscripts, t 9, R 
and A are used to identify parameters correspon- 

ding to the plate, the reinforcing patch and the 

adhesive layer, respectively. Thus Ee and ER 

denote the Young's modulus of the plate and the 

reinforcement, GA for the shear modulus of the 

adhesive, and tp, IR, tA being the respective thick- 

ness. Here some assumptions are made; (i) the 

plate and the reinforcement are both isotropic 

and have the same Poisson ratio ~ ( = ~ p = ~ e )  

and all deformations are linearly elastic, (ii) there 

is no out-of-plane bending due to the one-sided 

0"~ t t At , ,  
~-~YT ~ ' Patch ~ Plate 

I .  " 14 ahesive la.r 

O'~ 
(a) (b) 

Repair configuration: (a) Partially patched 
crack, (b) Cross-section along A-A' 

Fig. 1 

reinforcement and no residual thermal stress in- 

duced by bonding process, (iii) the reinforced 

plate has no variation across the thickness. The 

crack length a is assumed as a small value com- 

pared to the height of the patch, B. For the 

cross-section configuration shown in Fig. l (b) ,  

the redistribution of stress in a un-cracked plate 

can be explicitly using the one-dimensional theo- 

ry of bonded joints (Rose, 1988). The reduced 

stress is expressed as a 0 = a ~ / ( l  +S) where S =  

E'e tR/E'etP represents the ratio of the plate and 

the reinforcement stiffness. Here E ' = E / ( I - - v  z) 
is Young's modulus for the plane strain condition 

and E ' = E  for the plane stress condition. Then it 

can be assumed that distributed linear springs act 

between the crack faces as shown in Fig. 2 and the 

boundary conditions are described as follows : 

for Ix I_<b 

6o(X) =G~, as x2q-y z----, oo (1) 

O'yy=0, at I x l< a, y = 0  (2) 

and for b<l x [<-a 

~Yo(X) ~-~70, as Xz-[-y 2-----~ (x3 (3) 
go(X) =kE'euy(x) ,  at y = 0  (4) 

where k is the constraint factor. Under the plane 

stress condition, the appropriate value of k can be 

determined from the stress-displacement relation 

Fig. 2 

 o(X) 

t t t  

2 

W 

Oo(X) 
Distributed springs model for a partially 
patched crack 
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for the overlap shear joint  shown in Fig. 3 (Rose, 

1988). The displacement can be represented as 

aot~tA8 (5) 
ZIP = GA 

where fl is denoted as 

GA I 1 GA I 

The constraint factor is defined as 1/rcA with the 

characteristic length A and calculated using Eqs. 

(4) and (5) as 

1 o'0 _ GA (7)  
g= rcA Eeue EetvtAB 

3. Calculation of Stress Intensity 
Factor of A Patched Crack using 

Approximate Weight Function 

The crack surface displacement Uo(X) under a 

remote applied stress (7o (x) and the crack surface 

displacement Us(X) due to stresses as(X) exerted 

on distributed springs between the crack surface 

can be calculated by using the weight function m 

(x, a) (Kim, 2000). Thus the resultant crack sur- 

face displacement Uy(X) at x is expressed as 

u / x )  =uo(x) -u~(x)  

l l°[f° ] = Ep ao(x) re(x,  a) dx  re(x, a) da  (8) 

! r . r  r~ dxlm(x,  a)da E~J~ ~Jo as(x)m(x, a) 

On the other hand. the crack surface displace- 

ment at x~ due to a uniform stress (7~ acting on a 

Fig .  3 Cross-section for overlap shear joint 
subjected to loading 

segment 2w of the crack surface located at x3 can 

be expressed as 

1 t a r  rx,+w a) dx]m(xi, a) (9) u(x. x~)=~Jx, [Jx,-w arm(x, da 

The influence function is defined as g (xi, x~)= 
u (xi, xj)~at using Eq. (9). Thus, the crack sur- 

face displacement at x~ for uniform stresses acting 

on the n segments corresponding to the distri- 

buted springs is simply expressed as 

n 

us (x,) = X ajg (x,, x~) (lo) 
j = l  

where o'~ is given as Eekuy(x~) defined in Eq. 

(4). By substituting Eq. (10) into Eq. (8), the 

unknown crack surface displacement uy (xi) locat- 

ed at x~ is finally obtained as 

u ,  (x,)  = uo (x,)  - X a~o (x, ,  x~) 
j=l (11) rl 

= Uo (x,) -- ~Epkuy  (x~) g (x ,  x~) 
J=l  

Expressing the influence function g(xi,  xj) as 

g,-j, the numerical solution for the linear system 

of Eq. ( l l )  can be obtained from the Gauss-  

Seidel iterative method (Newman, 1982). Using 

the crack surface displacement obtained, the stress 

intensity factor Kr(a) for the patched crack is 

calculated as 

Kr(a) = f 0 a a 0 ( x ) r e ( x ,  a) dx 
(12) 

_ xlx,+WEpku,(x,)n-- re(x,  a) dx 
i = l d x i - - W  

In case of a cracked plate with the finite width, 

W, as shown in Fig. l ( a ) ,  the stress intensity 

factor can be calculated by using the correspond- 

ing approximate weight function which is obtain- 

ed from derivative of  the following approximate 

crack surface displacement (Wang , 1991): 

n 

Ur(X'a)=~/8~afr(a)~]=oCi(l= -a/X)i+(ll2) (13) 

where x is the coordinate of crack surface, ar 
being the normalized stress, and fr(a) is a nor- 

malized stress intensity factor that means the 

geometric factor for a crack subjected to O'r load- 

ing. And the variable Ci is obtained from the 
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boundary conditions of  the corresponding crack 

(Wang, 1991). 

4. Calculat ion  o f  Stress  Intensi ty  
Factor  for A Part ia l ly  Pa tched  Crack 

The dimensions and material properties of the 

cracked plate, reinforcement and the adhesive 

layer are summarized in Table 1 (Wang and 

Rose, 1998). The dimensions, W, L, b shown in 

Fig. l (a)  were 120mm, 30mm and 30mm, re- 

spectively. The width, w, of segment used in Eq. 

(9) was 0.05 mm. Figure 4 shows the stress in- 

tensity factor for a partially patched center crack 

within a finite plate or an infinite plate. Here 

Ko, flnlte is the stress intensity factor due to the 

only stress ao(X) reduced by reinforcement layer 

without considering the distribution of  springs 

(crack-bridging model) while K~,nmte is the 

stress intensity factor obtained from Eq. (12) with 

considering the reduction stress and the distri- 

bution of springs. In case of  2a /W<0.5 ,  the 

TaMe 1 Physical dimensions and material proper- 
ties of a typical repair (Wang and Rose, 
1988) 

Layer E (GPa) v Thickness (mm) 

Plate 71 0.3 3.0 
Reinforcement 207 0.3 1.02 

Adhesive 0.7* 0.33 0.203 

* Adhesive's shear modulus Ga 

0.6 

t °r p'--h 05 
~0.4  , -  

~ 0.3- ~ 
c-~ 0.2- 
7, ~ 0.1 

m 0.0 
o.o o'.2 o14 o'.6 o.a 

2a/W 

Fig. 4 Stress intensity factor for a par t ia l ly  patched 

center crack 

stress intensity factors are identical because the 

reduced stress, ao(X), and the remote applied 

stress, a=, are the same. In the case of 2 a / W >  
0.5, however, the stress intensity factors are dif- 

ferent due to the effect of distribution of springs 

as shown in Fig. 2 by attaching the patch for 

reinforcement. The approximate weight function 

of  Eq. (13) was used to calculate the stress in- 

tensity factor. On the other hand, in case of a 

center crack within an infinite plate, the stress 

intensity factors, Ko, i~l~te and Kr, lnn~te were ob- 

tained from the following the weight function 

(Rice, 1972) : 

a 1 (14) m(x ,  a ) =  a2 _ x2 

The stress intensity factors for a center crack 

within a finite plate were larger than those of  an 

infinite plate. Especially, in case of  a patched 

crack, it was found that the stress intensity factor 

was significantly influenced by the distribution of 

springs acting along the crack surfaces. In addi- 

tion, the stress intensity factors approach to an 

upper bound value, Kc=aoV~, which corres- 

ponds to the stress intensity factor for a fully 

patched center crack within an infinite plate 

(Rose, 1988). 

Figure 5 shows the infinite or finite cracked 

plates subjected to a** with a crack initiated from 

a circular or a semi-circular notche. The crack 

length, a, was assumed as a small value compar- 

ed to the dimensions of the reinforcement plate. 

The stress intensity factor for a cracked plate 

shown in Fig. 5(a) was calculated by using the 

approximate weight function obtained from Eq. 

(13), which needs the following normalized stress 

and normalized stress intensity factor (Kujawski, 

1991): 

= 1.683f [( I + 2 p ) - ° ' s +  (1 + 2 p ) - " s l ~ f ~  (16) 

where p is the radius of curvature, and 



Evaluation o f  Stress Intensity Factor for A Partially Patched Crack Using an Approximate Weight ... 1663 

f = l  for p / a < a . 2  

f = 1 + 0 . 2 0 6 ( - ~ - - - 0 . 2 )  for p / a > 0 . 2  

The normalized stress and normalized stress in- 

tensity factor for Fig. 5(b) can be represented as 

(Newman, 1994) 

for a <  1.5 

~r (~) = 3 '  1635--6'9765~+ 14" 1306~z- 19"217~3 o'= (17) 

+ 16.85~--8.971285+2.616~--0.3188 ~ 

f r ( a ) -  K 

cr®fk-d (18) 
=3.5479-7.2009a+ 15.7223a2-22.466a a 

+20.0387a 4-10.529a~+ 2.96a~-0.342a 7 

where ~ is x / p  for a, being a/p. 
In a similar way shown in Fig. 2, it was as- 

sumed that the springs were distributed fully 

along the crack surfaces. In the cracked plates 

shown in the Fig. 5, therefore, the reduced stress, 

00(X), can be expressed by o¥ ( x / p ) / ( 1 - t - S ) .  

Figure 6 represents the stress intensity factors 

for double cracks initiated from a circular hole 

within an infinite plate. The radius of  curvature, 

p, is 10 mm. Here K** is the stress intensity factor 

without the patch for reinforcement, / ~  for only 

the reduced stress due to the reinforcement plate, 

and Kr for stress intensity factor obtained from 

Eq. (12) considering the distribution of spring 

along crack surface• When the crack length, a, 

is very small, the stress intensity factor, Kr, is 

similar to Ko because the reduced stress, o'o, is 

more dominant than the effect of  spring distribut- 

ion along the crack surfaces. However, as the 

crack length increases, the stress intensity factor 

Kr  approaches an upper bound value (Rose, 

1988), _Kc=O'o,/-~-A -. Figure 7 presents the stress 

intensity factors for a single crack initiated from 

a semi-circular notch• Also the stress intensity 

f ac to r s , /~ ,  Ko and Kr are shown, and the radius 

of curvature is 10 mm. The approximate weight 

function was obtained from Eqs. (13) and (14). 

As shown in Fig. 6, the stress intensity factor, Kr, 

0.4, 

L- 

Fig. 6 

0.3. 

0.2. 
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is similar to Ko when the crack length is small 

while the stress intensity factor decreases with the 

crack length. However, the stress intensity factor 

decreases more slowly than that of double cracks 

initiated from a circle hole. This indicates the 

effect of the reinforcement for double cracks 

within the patched plate is more effective than 

that of a single crack at the semi-circular notch. 

5. Conclusions 

The stress intensity factor for a partially patch- 

ed center crack within a finite plate was obtained 

successfully by using an approximate weight func- 

tion and the crack-bridging model. Addit ionally,  

in case of a single or double cracks initiated from 

a notch, the stress intensity factors considering the 

effect of the reinforcement plate could be easily 

calculated by using its approximate weight func- 

tion. 

This crack-bridging model using weight func- 

tion shows the capabili ty of calculating the stress 

intensity factor for a patched crack subjected to 

an arbitrary loading. 
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